Generalized Theory of Electro-Mechanical Resonators with Fractal Electrodes
نویسندگان
چکیده
In this paper, we study the operation of electrostatically actuated electromechanical resonators having fractal electrodes. Using the spring-mass model, we establish the scaling relationships for pull-in instability , voltage dependent resonance frequency 1 , and pull-in voltage , where is the fractal dimension of the electrode, is the air-gap, and are the resonance frequency at zero and applied bias respectively, and is the steady state position of the moving electrode. These scaling relationships reduce to the well known pull-in instability, and resonance frequency of resonators based on planar 2 and cylindrical 1 electrodes. The generality of the scaling relationships are confirmed by using electrodes based on array of cylinders, that allow us to continuously scan all fractal dimension in between planar and cylindrical electrodes (1 2) simply by tuning the pitch of the array.
منابع مشابه
Extraction of Nonlinear Thermo-Electroelastic Equations for High Frequency Vibrations of Piezoelectric Resonators with Initial Static Biases
In this paper, the general case of an anisotropic thermo-electro elastic body subjected to static biasing fields is considered. The biasing fields may be introduced by heat flux, body forces, external surface tractions, and electric fields. By introducing proper thermodynamic functions and employing variational principle for a thermo-electro elastic body, the nonlinear constitutive relations an...
متن کاملA model for modified electrode with carbon nanotube composites using percolation theory in fractal space
We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...
متن کاملThermo-Elastic Damping in Nano-beam Resonators Based on Nonlocal Theory
In this article thermoelastic damping in nano-beam resonators is investigated based on nonlocal theory of elasticity and the Euler-Bernoulli beam assumptions. The governing equation of deflection of the beam is obtained from shear and moment resultants and stress–strain relationship of the nonlocal elasticity model and also the governing equations of thermoelastic damping are established by usi...
متن کاملNonlocal DQM for Large Amplitude Vibration of Annular Boron Nitride Sheets on Nonlinear Elastic Medium
One of the most promising materials in nanotechnology such as sensors, actuators and resonators is annular Boron Nitride sheets (ABNSs) due to excelled electro-thermo-mechanical properties. In this study, however, differential quadrature method (DQM) and nonlocal piezoelasticity theory are used to investigate the nonlinear vibration response of embedded single-layered annular Boron Nitride shee...
متن کاملThermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
متن کامل